Ministry of Higher Education and Scientific Research - Iraq University of Warith Al_Anbiyaa Engineering Department Refrigeration and Air Conditioning Techniques Engineering ## MODULE DESCRIPTION FORM # نموذج وصف المادة الدراسية | Module Information | | | | | | | | |------------------------------------|-------------------------|---|-------------------------------|---------------------------|---------------------------------|----|--| | | معلومات المادة الدراسية | | | | | | | | Module Title | | | Modu | ıle Delivery | | | | | Module Type | | | | | ☐ Theory | | | | Module Code | | MPAC106 | ✓ 🖾 Lecture | | | | | | ECTS Credits | | ************************************** | X | ☐ Tutorial
☐ Practical | | | | | SWL (hr/sem) | | 700) | | | | | | | Module Level | | | Semester of Delivery | | 2 | | | | Administering Department | | Refrigeration and air conditioning technologies | College TCB | | | | | | Module Leader | Ahm <mark>ad</mark> | Aliwi Samarmad | e-mail | ahmed | . <mark>ele</mark> iwi@gmail.co | om | | | Module Leader's Acad. Title | | Lecturer | Module Leader's Qualification | | PHD | | | | Module Tutor | | None | e-mail E-mail | | | | | | Peer Reviewer Name | | | e-mail | | | | | | Scientific Committee Approval Date | | 15/10/2024 | Version Number 1 | | | | | | Relation with other Modules | | | | | | |-----------------------------------|----|----------|--|--|--| | العلاقة مع المواد الدراسية الأخرى | | | | | | | Prerequisite module NA Semester | | | | | | | Co-requisites module | NA | Semester | | | | | Module Aims, Learning Outcomes and Indicative Contents | | | | | | |--|--|--|--|--|--| | | أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية | | | | | | Module Aims | This is the basic subject for all electrical and electronic circuits. This course deals with the basic concept of electrical circuits. To understand voltage, current and power from a given circuit. To develop problem solving skills and understanding of circuit theory through the application of techniques. To understand Kirchhoff's current and voltage Laws problems. | | | | | | Module Learning
Outcomes | Upon completion of the course, students should be able to: Define Ohm's law. List the various terms associated with electrical circuits. Recognize how electricity works in electrical circuits. Describe electrical power, charge, and current. Explain the two Kirchoff's laws used in circuit analysis. Discuss the various properties of resistors, capacitors, and inductors. Discuss the operations of sinusoid and phasors in an electric circuit. Identify the capacitor and inductor phasor relationship with respect to voltage and current. | | | | | | Indicative Contents | Indicative content includes the following. DC circuits – Current and voltage definitions, Passive sign convention and circuit elements, Combining resistive elements in series and parallel. Kirchhoff's laws and Ohm's law. Anatomy of a circuit, Network reduction. [15 hrs] AC circuits I – Time dependent signals, average and RMS values. Capacitance and inductance, energy storage elements, simple AC steady-state sinusoidal analysis. [15 hrs] AC Circuits II - RL, RC and RLC circuits - Frequency response of RLC circuits, simple filter and band-pass circuits, resonance and Q-factor, use of Bode plots, use of differential equations and their solutions. Time response (natural and step responses). Introduction to second order circuits. [15 hrs] | | | | | | Revision problem classes. [6 fi | rsj | |---------------------------------|-----| | | | | | | Resistive networks, voltage and current sources, Thevenin equivalent circuits, current and voltage division, input resistance, output resistance, maximum power transfer, RMS and power dissipation, current limiting and over voltage protection. [15 hrs] #### **Learning and Teaching Strategies** استراتيجيات التعلم والتعليم Strategies Assessr Assessment is based on hand-in assignments, participation in the exercises, classes interactive tutorials, Quizzes and Practical testing #### Student Workload (SWL) الحمل الدراسي للطالب | Structured SWL (h/sem) | 116 | Structured SWL (h/w) | 8 | | |--------------------------|-----|---------------------------|---|--| | Unstructured SWL (h/sem) | 59 | 59 Unstructured SWL (h/w) | | | | Total SWL (h/sem) | | 210 | | | #### **Module Evaluation** تقييم المادة الدراسية | | | Time/Nu | Weight (Marks) | Week Due | Relevant Learning | |------------------|--------------|------------------|----------------|---------------------------|-------------------| | | | mber | weight (warks) | week Due | Outcome | | Formative | Quizzes | 4 | 20% (20) | 3,5,9 <mark>,</mark> 12 | LO #1,2,10 | | assessment | Assignments | 2 | 10% (10) | 7, <mark>8</mark> | LO#8 | | assessment | Report/Lab | 1 | 10% (10) | continu <mark>o</mark> us | LO # 11 | | Summative | Midterm Exam | 2 hr | 10% (10) | 7 | LO # 1-12 | | assessment | Final Exam | 3hr | 50% (50) | 16 | All | | Total assessment | | 100% (100 Marks) | | | | #### **Delivery Plan (Weekly Syllabus)** المنهاج الاسبوعي النظري | | Material Covered | |--------|---| | Week 1 | Resistance, conductance, effect of temp. on the resistance value | | Week 2 | Oham's law, series connection, parallel connection, compound connection | | Week 3 | Voltage and current divider solved examples, kirchhoff's laws | | Week 4 | Star-delta conversion examples | | Week 5 | Thevenin's theorem, maximum power transfer | | Week 6 | Nodal method, superposition | | Week 7 | Alternating voltage and current | | Week 8 | Frequency, period, instantaneous value of voltage and current | | | | | |---------|--|--|--|--|--| | Week 9 | Component of A.C circuit, pure resistance, pure inductance, pure capacitance | | | | | | Week 10 | Series A.C circuit, R,L,C in series | | | | | | Week 11 | Impedance, phase angle, resonance, phase diagram | | | | | | Week 12 | Parallel A.C circuit, R,L,C, Admittance, power factor | | | | | | Week 13 | Active, reactive, apparent power in A.C circuit | | | | | | Week 14 | 3-phase circuit | | | | | | Week 15 | Preparatory week before the final Exam | | | | | | | Delivery Plan (Weekly Lab. Syllabus) | | | | | | | المنهاج الاسبوعي للمختبر | | | | | | | Material Covered | | | | | | Week 1 | Lab 1: Using Multimeter to measure Voltage, Current and Resistance | | | | | | Week 2 | Lab 2: Ohm's law. | | | | | | Week 3 | Lab 3: Voltage and current divider rules | | | | | | Week 4 | Lab 4: Kirchhoff's laws | | | | | | Week 5 | Week 5 Lab 5: Thevenin's Theorem | | | | | | Week 6 | Week 6 Lab 6: Series RLC circuit | | | | | | Week 7 | Week 7 Lab 7: Parallel RLC circuit | | | | | | | Learning and Teaching Resources | | | | | | | مصادر التعلم والتدريس | | | | | | | Text Available in the | | | | | | | Text | Available in the Library? | |-------------------|--|---------------------------| | Recommended Texts | DC Electrical Circuit Analysis: A Practical Approach, 2020. | | | Websites | https://docs.google.com/file/d/0B_O5jg0LZ_ZXYlg0WVU1bkhrLTg/edit | No | ### **Grading Scheme** مخطط الدرجات | Group | Grade | التقدير | Marks (%) | Definition | |-----------------------------|----------------------|---------|-----------|--------------------------------| | G | A - Excellent | امتياز | 90 - 100 | Outstanding Performance | | Success Group
(50 - 100) | B - Very Good | جيد جدا | 80 - 89 | Above average with some errors | | (30 - 100) | C - Good | रॉंट | 70 - 79 | Sound work with notable errors | #### وصف المقرر الدراسي | | D - Satisfactory | متوسط | 60 - 69 | Fair but with major shortcomings | |------------|-------------------------|---------------------|---------|---------------------------------------| | | E - Sufficient | مقبول | 50 - 59 | Work meets minimum criteria | | Fail Group | FX – Fail | راسب (قيد المعالجة) | (45-49) | More work required but credit awarded | | (0-49) | F – Fail | راسب | (0-44) | Considerable amount of work required | | | | | | | **Note:** Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.